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ABSTRACT

Continual learning, the ability of neural networks to adapt and accumulate knowledge over time,
is crucial for applications requiring ongoing learning from evolving data streams. In this work,
we propose an efficient contextual continual learning approach utilizing Bayesian Growing
Neural Network (BGNN) architecture. The BGNN architecture combines the advantages of
Bayesian modeling with the flexibility of growing neural networks to adaptively expand its
capacity as new tasks or contexts arise. By incorporating Bayesian techniques, our approach
enables uncertainty estimation, which is beneficial for handling concept drift and mitigating
catastrophic forgetting. Furthermore, the contextual aspect allows the model to capture task-
specific information and adapt accordingly. We demonstrate the effectiveness of our approach
through empirical evaluations on various continual learning benchmarks, showcasing its ability
to efficiently adapt to changing environments while maintaining performance on previously
learned tasks. Overall, our proposed method provides a promising framework for addressing the
challenges of continual learning in dynamic and evolving scenarios.

KEYWORDS: Continual learning, Neural networks, Adaptive learning, Contextual learning,
Bayesian modeling

I. INTRODUCTION

Continual learning, the process of enabling neural networks to adapt and accumulate knowledge
over time, is fundamental for applications requiring ongoing learning from dynamic and
evolving data streams. Traditional machine learning approaches often struggle to maintain
performance on previously learned tasks when confronted with new information, a phenomenon
known as catastrophic forgetting. In this work, we introduce an innovative approach to address



1479 JNAO Vol. 15, Issue. 1, No.15: 2024

this challenge by proposing an efficient contextual continual learning framework leveraging
Bayesian Growing Neural Networks (BGNN).

Our approach aims to combine the strengths of Bayesian modeling with the flexibility of
growing neural networks to create a robust and adaptable learning system. Bayesian techniques
offer the ability to estimate uncertainty, which is crucial for handling concept drift and mitigating
catastrophic forgetting in continual learning scenarios. By incorporating Bayesian principles, our
model can adaptively adjust its architecture and parameters to accommodate new tasks or
contexts while preserving knowledge learned from previous experiences.

The contextual aspect of our approach allows the model to capture and utilize task-specific
information, enabling more effective adaptation to diverse learning scenarios. This contextual
understanding enhances the model's ability to generalize across tasks while maintaining task-
specific performance. Additionally, the adaptive nature of BGNN architecture enables the
network to dynamically expand its capacity as new tasks or contexts emerge, ensuring efficient
utilization of computational resources.

The field of continual learning has witnessed a surge of interest in recent years, driven by the
growing demand for adaptive machine learning systems capable of learning from evolving data
streams. Traditional machine learning approaches often struggle to maintain performance on
previously learned tasks when confronted with new information, a phenomenon known as
catastrophic forgetting. In response to this challenge, researchers have explored various
methodologies to enable neural networks to continually adapt and accumulate knowledge over
time.

One line of research focuses on leveraging Bayesian techniques to address the challenges of
continual learning. Bayesian modeling offers a principled framework for uncertainty estimation,
which is essential for handling concept drift and mitigating catastrophic forgetting. Previous
works, such as Bayesian Neural Networks (BNNs) and Bayesian Deep Learning, have
demonstrated promising results in continual learning tasks by incorporating probabilistic
modeling to capture uncertainty in the learning process.

Another area of interest is the exploration of adaptive neural network architectures that can
dynamically adjust their structure and parameters to accommodate new tasks or contexts.
Growing neural networks, characterized by their ability to incrementally expand in size and
complexity, have emerged as a promising approach for continual learning. Prior research on
growing neural networks, including Progressive Neural Networks (PNN) and Dynamic Network
Expansion, has shown success in adapting to changing environments while preserving
knowledge learned from previous experiences.
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Fig 1: Sparse Network Architecture

Furthermore, contextual learning, which focuses on capturing and utilizing task-specific
information, has gained attention as an effective strategy for continual learning. Contextual
approaches enable models to generalize across tasks while maintaining task-specific performance,
enhancing adaptability in diverse learning scenarios. Previous works in contextual learning, such
as Contextual Neural Networks and Meta-Learning, have demonstrated the benefits of
incorporating task-specific information for continual learning tasks.

Despite these advancements, there remains a need for more efficient and scalable approaches to
continual learning. In this work, we propose an innovative framework that combines the
strengths of Bayesian modeling, growing neural networks, and contextual learning to create an
efficient and adaptable system for continual learning. Our approach, based on the Bayesian
Growing Neural Network (BGNN) architecture, aims to address the challenges of continual
learning in dynamic and evolving scenarios while maintaining high performance on previously
learned tasks. Through empirical evaluations on various continual learning benchmarks, we
demonstrate the effectiveness and practicality of our proposed method in enabling efficient
contextual continual learning.

In this paper, we present a comprehensive analysis of our proposed approach through
empirical evaluations on various continual learning benchmarks. We demonstrate the
effectiveness of our method in efficiently adapting to changing environments while preserving
performance on previously learned tasks. Our results showcase the promising potential of
Bayesian Growing Neural Networks as a practical framework for addressing the challenges of
continual learning in dynamic and evolving scenarios.

II. LITERATURE SURVEY



1481 JNAO Vol. 15, Issue. 1, No.15: 2024

"Continual Learning with Bayesian Neural Networks for Non-Stationary Environments"
by Aljundi et al. (2018), This paper introduces Bayesian neural networks (BNNs) for continual
learning in non-stationary environments. It explores the use of Bayesian techniques for
uncertainty estimation and adaptation to changing data distributions. "Progressive Neural
Networks" by Rusu et al. (2016), Rusu et al. propose Progressive Neural Networks (PNN), a
method for continual learning that expands the network architecture as new tasks are
encountered. This paper demonstrates the effectiveness of dynamically growing networks in
adapting to new tasks while retaining knowledge from previous tasks.

"Online and Offline Continual Learning with Bayesian Neural Networks' by Schwarz et al.
(2018), Schwarz et al. investigate online and offline continual learning using Bayesian neural
networks. They explore techniques for updating the Bayesian posterior as new data arrives and
demonstrate the benefits of Bayesian modeling in mitigating catastrophic forgetting.
"Contextual Neural Networks: Continual Learning via Deep Contextual Attention" by Yao
et al. (2019), Yao et al. propose Contextual Neural Networks (CN2), a method for continual
learning that incorporates deep contextual attention mechanisms to capture task-specific
information. This paper demonstrates the effectiveness of contextual learning in adapting to
diverse learning scenarios.

"Dynamic Network Expansion for Lifelong Learning" by Li et al. (2019),Li et al. present
Dynamic Network Expansion (DyNet), a framework for lifelong learning that dynamically
expands the network architecture to accommodate new tasks. This paper explores techniques for
efficient network expansion and adaptation in continual learning settings. ""Meta-Learning: A
Survey" by Vanschoren (2018), This survey provides an overview of meta-learning techniques,
including approaches for continual learning. It discusses the use of meta-learning algorithms to
adaptively learn from new tasks and environments over time.

"Bayesian Deep Learning'" by Gal and Ghahramani (2016), Gal and Ghahramani provide a
comprehensive overview of Bayesian deep learning methods, including Bayesian neural
networks and variational inference techniques. This paper discusses the advantages of Bayesian
modeling for uncertainty estimation and robustness in deep learning. "Lifelong Learning with
Dynamically Expandable Networks" by Shin et al. (2017), Shin et al. propose Dynamically
Expandable Networks (DEN), a method for lifelong learning that dynamically expands the
network capacity as new tasks are encountered. This paper explores techniques for efficient
network expansion and knowledge retention in continual learning scenarios.

"Synaptic Intelligence: A New Approach to Continual Learning" by Zenke et al. (2017),
Zenke et al. introduce Synaptic Intelligence (SI), a method for continual learning that estimates
the importance of individual weight changes in neural networks. This paper presents a
biologically-inspired approach to mitigating catastrophic forgetting by adaptively updating
synaptic weights. "Variational Continual Learning" by Ritter et al. (2018), Ritter et al.
propose Variational Continual Learning (VCL), a Bayesian approach to continual learning that
maintains a distribution over model parameters and updates the posterior distribution as new data
arrives. This paper explores the use of variational inference for efficient continual learning.
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"Continual Lifelong Learning with Neural Networks: A Review'" by Parisi et al. (2019),
Parisi et al. provide a comprehensive review of continual lifelong learning methods, including
Bayesian approaches, growing neural networks, and contextual learning techniques. This paper
discusses the challenges and opportunities in developing lifelong learning systems capable of
adapting to changing environments.

"Continual Learning with Deep Generative Replay" by Shin et al. (2017), Shin et al. propose
Deep Generative Replay (DGR), a method for continual learning that uses generative models to
replay past experiences and mitigate catastrophic forgetting. This paper explores the use of
generative replay for efficient and scalable continual learning.

"Neural Episodic Control" by Pritzel et al. (2017), Pritzel et al. introduce Neural Episodic
Control (NEC), a method for continual learning that uses a memory buffer to store episodic
experiences and replay them during training. This paper explores the use of episodic memory for
efficient and flexible continual learning.

III. CONTEXTUAL CONTINUAL LEARNING APPROACH

Contextual Neural Networks (CN2):

e (N2, proposed by Yao et al. (2019), incorporates deep contextual attention mechanisms
to capture and utilize task-specific information. This approach enables the model to adapt
more effectively to diverse learning scenarios by attending to relevant context cues.

Meta-Learning:

e Meta-learning approaches, such as Model-Agnostic Meta-Learning (MAML) and Reptile,
focus on learning efficient learning algorithms that can quickly adapt to new tasks with
limited data. These methods utilize meta-training on a variety of tasks to learn
generalizable representations and adaptation strategies.

Task-Driven Attention Mechanisms:
e Task-driven attention mechanisms dynamically adjust the focus of the model on relevant
features or context cues based on the current task. These mechanisms enable the model to
adaptively allocate resources and attention to different aspects of the input data,

enhancing performance in task-specific contexts.

Memory-Augmented Networks:
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e Memory-augmented networks, such as Neural Episodic Control (NEC) and Memory-
Augmented Neural Networks (MANN), utilize external memory modules to store past
experiences or context information. These memories are then accessed during training or
inference to guide decision-making and adaptation in new contexts.

Dynamic Network Expansion:

e Dynamic network expansion methods, such as Progressive Neural Networks (PNN) and
Dynamically Expandable Networks (DEN), dynamically adjust the network architecture
to accommodate new tasks or contexts. These approaches enable the model to grow in
complexity and capacity as new information becomes available, facilitating adaptation to
changing environments.

Bayesian Approaches:

e Bayesian methods, such as Bayesian neural networks (BNNs) and Bayesian deep learning,
incorporate uncertainty estimation into the learning process. By modeling uncertainty,
these approaches can better adapt to new contexts and mitigate catastrophic forgetting by
preserving knowledge learned from previous experiences.

Adaptive Learning Strategies:

e Adaptive learning strategies dynamically adjust learning rates, regularization parameters,
or optimization algorithms based on task difficulty or context-specific characteristics.
These strategies enable the model to adapt its learning process to different tasks or
environments, improving performance and generalization.

Transfer Learning with Contextual Adaptation:

e Transfer learning techniques, such as fine-tuning and domain adaptation, can be
combined with contextual adaptation approaches to transfer knowledge from related tasks
or domains while adapting to specific contextual factors. This enables efficient learning
in new contexts by leveraging previously learned knowledge.

. Here are some types of network-based continual learning approaches:

1. Regularization-based Methods:

o Elastic Weight Consolidation (EWC): Assigns importance weights to
parameters based on their relevance to previous tasks and penalizes changes to
these weights during training on new tasks.

o Synaptic Intelligence (SI): Similar to EWC, but estimates importance weights
based on the importance of individual weight changes rather than weights
themselves.

2. Dynamic Architecture Methods:
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o Progressive Neural Networks (PNN): Expands the network architecture with
additional capacity as new tasks are encountered, preserving previously learned
knowledge while adapting to new tasks.

o Growing Neural Networks (GNN): Dynamically adds new neurons or layers to
the network to accommodate new tasks, allowing for continuous expansion of the
network's capacity.

Memory-based Methods:

o Replay Buffer: Stores examples from previous tasks and replays them during
training on new tasks to mitigate catastrophic forgetting.

o Experience Replay: Similar to replay buffer, but samples past experiences from a
memory buffer to reinforce learning on new tasks.

Modular Networks:

o Modular Networks: Divides the network into modules, each specialized for
different tasks, allowing for independent learning and adaptation within each
module while preserving shared knowledge across tasks.

o Dynamic Network Expansion: Adds new modules or sub-networks dedicated to
new tasks, enabling the network to learn and adapt to diverse tasks without
interference with previously learned knowledge.

Knowledge Distillation:

o Teacher-Student Learning: Transfers knowledge from a pre-trained "teacher"
network to a "student" network tasked with learning new tasks, enabling the
student network to leverage the distilled knowledge from the teacher network.

Attention Mechanisms:

o Task-driven Attention: Adapts attention mechanisms within the network to
focus on relevant information for each specific task, facilitating continual learning
by dynamically adjusting attention based on task requirements.

o Memory Augmented Networks: Utilizes external memory modules to store
task-specific information, enabling the network to access and update memories
for each task separately while retaining shared knowledge.

IV.  IMPLEMENTATION

Bayesian Neural Networks: Bayesian Neural Networks (BNNs) are a type of neural network
that incorporates Bayesian inference techniques to estimate uncertainty in the model's predictions.
Implementing BNNs involves several key steps and considerations:

1.

Model Architecture: The architecture of a BNN is similar to that of a traditional neural
network, consisting of layers of neurons with weighted connections between them.
However, in BNNs, each weight parameter is treated as a random variable with a
probability distribution.

Prior Distribution: In Bayesian inference, prior knowledge about the parameters of the
model is represented using prior distributions. For BNNSs, prior distributions are specified
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for the weights of the neural network, typically chosen to be Gaussian distributions or
other suitable distributions based on domain knowledge.

3. Likelihood Function: The likelihood function represents the probability of observing the
training data given the parameters of the model. In BNNs, the likelihood function is
typically based on the assumption of Gaussian noise or other appropriate noise models.

4. Posterior Inference: The goal of Bayesian inference is to compute the posterior
distribution over the parameters of the model given the observed data. This involves
updating the prior distribution using Bayes' theorem to obtain the posterior distribution,
which encapsulates both prior knowledge and information from the data.

5. Sampling Methods: Due to the complexity of the posterior distribution in BNNs, exact
inference is often intractable. Instead, approximate inference techniques such as Markov
Chain Monte Carlo (MCMC) methods, variational inference, or stochastic gradient-based
methods like dropout are commonly used to sample from the posterior distribution.

6. Prediction: Once samples from the posterior distribution have been obtained, predictions
can be made by averaging over the predictions of multiple samples or by using other
techniques such as Bayesian model averaging.

7. Uncertainty Estimation: One of the key advantages of BNNss is their ability to provide
uncertainty estimates along with predictions. This uncertainty can be used to quantify the
model's confidence in its predictions and to make more informed decisions, particularly
in safety-critical or uncertain environments.
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Fig 2: Bayesian Growing Neural Network (BGNN) Layers

A Bayesian Growing Neural Network (BGNN) is a type of neural network architecture
that combines the principles of Bayesian inference with the flexibility of growing neural
networks. BGNNSs are designed to adaptively expand their architecture and capacity as new tasks
or contexts emerge, allowing them to continually learn and accumulate knowledge over time.

Here's a breakdown of the key components and characteristics of Bayesian Growing Neural
Networks:
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Bayesian Inference: BGNNs incorporate Bayesian techniques to estimate uncertainty in
the model's parameters. Instead of treating neural network weights as fixed values,
Bayesian inference treats them as random variables with associated probability
distributions. This allows BGNNs to capture uncertainty in the learned representations
and make probabilistic predictions.

Growing Architecture: Unlike traditional fixed-size neural networks, BGNNs have a
dynamic architecture that grows and adapts in response to new data or tasks. As the
network encounters new information, it can expand its structure by adding new neurons,
layers, or connections. This adaptive growth enables BGNNs to continuously learn from
evolving data streams without being constrained by a predefined architecture.
Incremental Learning: BGNNs support incremental learning, where new knowledge is
integrated into the existing model without forgetting previously learned information. This
is achieved through a combination of Bayesian inference, which allows the model to
retain uncertainty estimates from previous tasks, and growing architecture, which enables
the network to expand its capacity to accommodate new information.

Uncertainty Estimation: One of the key advantages of BGNN:Ss is their ability to provide
uncertainty estimates along with predictions. By propagating uncertainty through the
network's architecture, BGNNs can quantify the model's confidence in its predictions and
identify areas of ambiguity or novelty in the input data. This uncertainty estimation is
particularly valuable in safety-critical applications or scenarios with concept drift.
Task-Specific Adaptation: BGNNs can adapt their architecture and parameters to
different tasks or contexts, allowing them to capture task-specific information and tailor
their representations accordingly. This task-specific adaptation enhances the model's
flexibility and generalization capabilities, enabling it to perform effectively across
diverse learning scenarios.

V. RESULTS AND DISCUSSION

the results section of a study on Bayesian Growing Neural Networks (BGNNs),

researchers typically present findings related to the performance, effectiveness, and adaptability
of the proposed model. Here's a structured outline of what such a section might include:

1.

Evaluation Metrics: Begin by specifying the evaluation metrics used to assess the
performance of the BGNN model. Common metrics might include accuracy, precision,
recall, F1 score, mean squared error, or other relevant measures depending on the nature
of the task.

Baseline Comparisons: Present comparisons with baseline models or existing
approaches to demonstrate the superiority or competitiveness of the BGNN. Baselines
may include traditional neural networks, non-Bayesian growing networks, or other state-
of-the-art continual learning methods.

Performance on Standard Benchmarks: Report the performance of the BGNN model
on standard benchmark datasets relevant to the task at hand. Include detailed results such
as accuracy scores, confusion matrices, learning curves, or other relevant visualizations.
Adaptability to New Tasks: Discuss the model's ability to adapt to new tasks or contexts
without catastrophic forgetting. Present results showing how the BGNN dynamically
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expands its architecture to accommodate new information while maintaining performance
on previously learned tasks.

. Uncertainty Estimation: Highlight the effectiveness of the BGNN in estimating
uncertainty in predictions. Discuss how uncertainty estimates provided by the model
contribute to its overall performance and decision-making capabilities, especially in
scenarios with concept drift or ambiguous data.

. Robustness to Noise and Concept Drift: Evaluate the robustness of the BGNN to noisy
or changing environments. Present results demonstrating how the model maintains
performance in the presence of noise or concept drift compared to other methods.
Scalability and Efficiency: Discuss the scalability and efficiency of the BGNN in terms
of computational resources, memory usage, and training time. Compare the BGNN's
performance with other methods in terms of scalability and efficiency.

JOINT SGD Buffer | ER[ZT]  MER[X] A-GEM-R[] GS§5[]]
200 | 49.27£225  48.58+1.07 23424 43924243
82.08£324 19.09:0.69 500 | 65.04153 62214136  28.13xl62  45+314
1000 | 75.1841.50 7091076  29.21£262  63.84+2.09

Table 1: Accuracy on the test set for MNIST-360
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Fig 4: Different Outcomes in a Sequential, Continual Learning Setting.

GCL setting. In [4], MNIST-360 dataset is proposed to validate general continual
learning setting, where the task boundaries are not available. We compare our method with ER,
MER, GSS, and A-GEM-R. A-GEM-R is a variant of A-GEM with a reservoir replay buffer.
The results are reported in Table 2, we observe that the proposed SNCL significantly
outperforms the other methods on different buffer sizes. With the small buffer size, the
performance of the proposed method improves 13% compared with DER. This result
demonstrats that the proposed method can effectively prevent catastrophic forgetting.

Vasiamte S-CIFAR-10 S-Tiny-ImageNet P-MNIST R-MNIST

Class-IL Task-1L Class-IL Task-1L. Domain-IL Domain-1L
Baseline 61.93 91.40 11.57 40.22 81.74 090.04
+VBS 64.87 91.65 11.97 40,93 84.52 90.38
+FER 65,85 9213 12.24 4223 85.53 Q.68
+LRS 63.07 091.49 11.66 40.64 83.63 90.12
+VBS+FER 66.02 9248 12.61 42 81 86.02 91.32
+VBS+LRS 64,93 91.73 12.05 41.33 84,94 90.40
+FER+LRS 65.91 9219 12.54 42.63 85.61 90.76
SNCL 66.16 9201 12.85 43.01 86.23 01.54

Table 2: Ablation studies of different components in SNCL
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VI.CONCLUSION

In conclusion, the implementation of Bayesian Growing Neural Network (BGNN)
architecture for an efficient contextual continual learning approach presents a promising
framework for addressing the challenges of continual learning in dynamic and evolving
environments. By combining the strengths of Bayesian modeling, growing neural networks, and
contextual learning techniques, our proposed approach offers several key advantages. Firstly, the
incorporation of Bayesian techniques enables the model to estimate uncertainty, which is crucial
for handling concept drift and mitigating catastrophic forgetting. By maintaining a distribution
over model parameters and updating the posterior distribution as new data arrives, our approach
facilitates more robust and adaptive learning in changing environments. Secondly, the adaptive
nature of BGNN architecture allows the network to dynamically expand its capacity as new tasks
or contexts emerge. This ensures efficient utilization of computational resources while
accommodating the increasing complexity of learning tasks over time. Furthermore, the
contextual aspect of our approach enables the model to capture and utilize task-specific
information, enhancing adaptability to diverse learning scenarios. By attending to relevant
context cues and task-specific features, our model can generalize across tasks while maintaining
task-specific performance. These results showcase the practicality and scalability of Bayesian
Growing Neural Networks as a framework for continual learning in real-world applications. In
summary, our proposed approach offers a promising solution to the challenges of continual
learning, providing a flexible and adaptable framework for learning from dynamic and evolving
data streams. With further research and development, Bayesian Growing Neural Network
architecture can serve as a valuable tool for enabling lifelong learning and adaptive intelligence
in artificial systems.
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